Google

Bypassing Mitigations by Attacking JIT Server in Microsoft Edge

Ivan Fratric
Infiltrate 2018

Google

About me

e Security researcher at Google Project Zero

e Previously: Google Security Team, Academia (UNIZG)
e Doing security research for the last 10 years

e Author: Domato, WinAFL, ROPGuard

e (@ifsecure on Twitter

Google

Browser exploit flow (example)

R RS

Google

Browser exploit flow (example)

ELER S

Google

Code execution mitigations

e Before:
mov rbx,gword ptr [rax+8]
call rbx

e After:

mov rbx,gword ptr [rax+8]
mov rax, rbx
call gword ptr [chakra! guard dispatch icall fptr]

e Bitmap of CFG-allowed targets (some granularity involved)

e Only checks forward edges (doesn’t check return addresses)

Google

Code execution mitigations

CFG ‘
ACG
CIG

e 2 new mitigations Introduced in Windows 10 creators update (1703)

Google

Code execution mitigations

CFG
ACG
CIG

Arbitrary Code Guard (ACG)

Make it impossible to
o allocate new executable pages

m eg.VirtualAlloc(... ,... ,PAGE EXECUTE READWRITE ,...)
o make existing executable pages writable
m eg.VirtualProtect(... ,... ,PAGE EXECUTE READWRITE ,...)

e Attempting results in 0xc0000604 STATUS_DYNAMIC_CODE_BLOCKED
Similar to PaX MPROTECT
What about JIT? JIT Server.

Google

Code execution mitigations

CFG
ACG
CIG

e Code Integrity Guard (CIG)
o Canonly load properly signed DLLs

Google

Agenda

Google

How ACG works?
Is it effective?

How does JIT server work
Issues (CFG and ACG)

Enabling ACG

Google

Relies on setting the dynamic code policy
Enabled by SetProcessMitigationPolicy()
In Edge:

00
01
02
03
04
05
06
07

KERNELBASE ! SetProcessMitigationPolicy
MicrosoftEdgeCP!SetProcessDynamicCodePolicy+0xcO
MicrosoftEdgeCP!StartContentProcess Exe+0x164
MicrosoftEdgeCP!main+0xfe

MicrosoftEdgeCP! main+0xa6
MicrosoftEdgeCP!WinMainCRTStartup+0x1b3
KERNEL32!BaseThreadInitThunk+0x14
ntdll!RtlUserThreadStart+0x21

10

When

IS it enabled?

¥ Windows PowerShell

PS C:\Users\Ivan Fratric>

ProcessName

Enable
EmulateAt1Thunks
Override DEP

ASLR:
BottomUp
Override BottomUp
ForceRelocateImages
RequireInfo
Override ForceRelocate
HighEntropy
Override High Entropy

StrictHandle:
Enable
Override StrictHandle

m Call:

Get-ProcessMitigation 2416

: MicrosoftEdgecP
: Running Process
1 2416

: ON

: False
: NOTSET
HE)
: False
i ON

: False

DisableWin32kSystemCalls

Audit
Override SystemCall

ExtensionPoint:
DisableExtensionPoints

Override ExtensionPoint

DynamicCode:
BlockDynamicCode
AllowThreadsToOptout
Audit
Override DynamicCode

Enable
SuppressExports
Override CFG

StrictControlFlowGuard

Override StrictCFG

DynamicCode:
BlockDynamicCode
AllowThreadsToOptOut
Audit
Override DynamicCode

11

When is it enabled?

From Microsoft’s blog post:

For compatibility reasons, ACG is currently only enforced on 64-bit desktop devices with a primary GPU running a
WDDM 2.2 driver (the driver model released with the Windows 10 Anniversary Update), or when software rendering
is use. For experimental purposes, software rendering can be forced via Control Panel ->Internet Options ->
“Advanced”. Current Microsoft devices (Surface Book, Surface Pro 4, and Surface Studio) as well as a few other
existing desktop systems with GPU drivers known to be compatible with ACG are opted into ACG enforcement. We
intend to improve the coverage and accuracy of the ACG GPU opt-in list as we evaluate the telemetry and feedback

from customers.

Google

12

When is it enabled?

2] Process Monitor - Sysinternals: www.sysinternals.com — O X

File Edit Event Filter Tools Options Help

FHRABECAG B HS HB LM
PID Operation Path
03 RegOpe e 0 are 0SO erne plore ode eg
5108 #f RegOpenKey HKLM\Software\Microsoft\CTF\TIP
5108 @t RegOpenKey HKLM\Software\Microsoft\Cryptography\Defaults\Provider
5108 ﬁ RegOpenKey HKLM\SYSTEM\CurrentControlSet\Control\Cryptography\Providers
5108 ﬂ RegOpenKey HKLM\System\CurrentControlSet\Control\Cryptography\Providers
5108 ﬁ RegOpenKey HKLM\Software\Microsoft\Cryptography\Calais\Smartcards
5108 ﬁ RegOpenKey HKCU\Software\Microsoft\internet Explorer\Codelntegrity
5108 gt RegOpenKey HKLM\Software\Microsoft\Internet Explorer\Codelntegrity
5108 @t RegOpenKey HKCU\Software\Classes\Local Settings\Software\Microsoft\Windows\CurrentVersion\AppContainer\Storage\mic...
5108 @it RegOpenKey HKLM\Software\Microsoft\internet Explorer\Codelntegrity
5108 ﬁ RegOpenKey HKLM\Software\Policies\Microsoft\Internet Explorer\Main
5108 ﬁ RegOpenKey HKCU\Software\Policies\Microsoft\Internet Explorer\Main
5108 ﬂ RegOpenKey HKCU\Software\Classes\Local Settings\Software\Microsoft\Windows\CurrentVersion\AppContainer\Mappings\S...
5108 ﬁ RegOpenKey HKCU\Software\Classes\Local Settings\Software\Microsoft\Windows\CurrentVersion\AppContainer\Mappings\S...
5108 @t RegOpenKey HKCU\Software\Classes\Local Settings\Software\Microsoft\Windows\CurrentVersion\AppContainer\Mappings\S...
5108 gt RegOpenKey HKCU\Software\Classes\Local Settings\Software\Microsoft\Windows\CurrentVersion\AppContainer\Mappings\S...
5108 ﬁ RegOpenKey HKCU\Software\Classes\Local Settings\Software\Microsoft\Windows\CurrentVersion\AppContainer\Storage\mic...
5108 ﬁ RegOpenKey HKCU\Software\Classes\Local Settings\Software\Microsoft\Windows\CurrentVersion\AppContainer\Storage\mic...

< >

Showing 18 of 952,119 events (0.0018%) Backed by virtual memory

Google

How effective is ACG?

Assumption: Attacker has a read/write primitive
e Data-only attacks

e Codereuse attacks
o Do we need a ROP compiler?

e Code second-stage payloads in JavaScript

o Need a way to call native-code functions from JavaScript and continue running script
o Libraries already exist (pwn.js from Theori)

Google

14

Mitigations that work together

e ACG, CIG, no CFG => ROP, privescs in JavaScript
e CFG, CIG, no ACG => Overwrite/allocate executable memory

e CFG, ACG, no CIG => Load a malicious .dll

Google

15

ACG Bypasses, prior work

e Abusing thread opt-out (no longer the case)
e Bypass using Warbird DRM framework (Alex lonescu)

Google

16

JIT server (simplified)

Load script

:

Parse into bytecode

bytecode, ...

A,

Interpret bytecode

RPC

native code address,

A,

Execute native code

A

Compiled code
PAGE_EXECUTE_READ

Compile the bytecode

Allocate and write native

Shared memory

code to shared memory

Compiled code

MicrosotfEdgeCP.exe (content process)

Google

BlockDynamicCode = ON

PAGE_READWRITE

MicrosotfEdgeCP.exe (JIT server)
BlockDynamicCode = OFF

17

JIT server, maintaining state

Load script

!

Parse into bytecode

Bytecode, ... Bytecode, ...

Process
context

Thread
context

Script
context

¥

A

Execute bytecode

<

context handle context ptr
RPC

native code address,

A

Execute native code

4

Compiled code
PAGE_EXECUTE_READ

Compile the bytecode

Shared memory

Allocate and write native
code to shared memory

MicrosotfEdgeCP.exe (content process)

Google

BlockDynamicCode = ON

Compiled code
PAGE_READWRITE

MicrosotfEdgeCP.exe (JIT server)
BlockDynamicCode = OFF

18

Exposed methods / managing contexts

e (!) ConnectProcess - Connects a new Content Process and creates the corresponding Process Context

e (!)InitializeThreadContext - Creates a ServerThreadContext object on the server. Also pre-reserves
memory for compiled code and JIT thunks.

e InitializeScriptContext - Creates a ServerThreadContext object on the server.

e CleanupThreadContext - Marks Thread context as closed, removes it from the Thread context
dictionary and closes all associated ScriptContexts

e CloseScriptContex - Marks Script context as closed and removes it from the Script context dictionary

e CleanupScriptContex - Closes script context if not closed already and deletes the associated
ServerScriptContext object

e Shutdown - Deletes closed context objects, deletes allocated pages and unregisters RPC server

Google 19

Exposed methods / updating data in contexts

UpdatePropertyRecordMap
AddDOMFastPathHelper
AddModuleRecordInfo
SetWellKnownHostTypeld
SetlsPRNGSeeded

Google

20

Exposed methods / working with thunks

e Thunk == short trampoline that jumps to function implementation

o Executable code
o Every function gets one

e NewlnterpreterThunkBlock - Allocates a new executable buffer and fills it with
interpreter thunks.

e DecommitinterpreterBufferManager - Decommits all memory pages used for
thunk allocations.

e IsinterpreterThunkAddr - Checks if address is in one of the interpreter thunk
blocks

Google 21

Exposed methods / working with compiled code

e (!) RemoteCodeGen

o This is where the magic happens
o Large structure as input/output
m Bytecode
m Type information, caches, inlinee information, addresses

e IsNativeAddr - checks if address is in one of the JIT blocks
e (!) FreeAllocation - Frees executable memory allocation made previously by the
server and clears CFG targets

Google

22

JIT phases (1/2)

(1) Build Intermediate Representation (IR) from bytecode
Function inlining

Build flow graph

Global optimizations

Lower IR into machine-specific representation (not yet encoded)
Encode large constants (security)

Insert stack probes

Register allocation

Google

23

JIT phases (2/2)

Google

Peephole optimizations

Layout

Insert bailouts

Insert NOPs at random points (security)
Insert function prolog and epilog

Final lower

(1) Encoder

Fixups on data allocated by JIT process

24

Encoder phase (Encoder.cpp)

e Prepares the buffer with compiled code
o Encoded instructions
o Jump tables for switch statements

e Allocates memory for executable code
e Copies the buffer

Google

25

A

ocating memory

Free

Google

26

Allocating memory / Segments (SectionAllocWrapper.cpp)

- IS | -

e Segment == Shared memory object (created via CreateFileMapping)

e Mapped into each process using MapViewOfFile2
o PAGE_EXECUTE_READ for content process
o PAGE_READWRITE for JIT process

e In JIT process unmapped immediately after writing

Google 27

Allocating memory / Pages (PageAllocator.cpp)

S| -
~ I N N i . |

Pages start as decommitted -> committed using VirtualAllocEx when needed
Each segment has 2 bit vectors for free pages and decommitted pages

Once a page gets committed it gets filled with 0xCC (int 3)

When sufficient number of pages is freed, pages start getting decommitted

Google 28

Allocating memory / Allocations (CustomHeap.cpp)

S | [
= | [| - | E—

e Large allocations (>pagesize) get the corresponding number of pages
For smaller allocations, pages get divided into 128-byte blocks

o Bitmap of free blocks inside a page
Pages get put in buckets for allocations of size 128, 256, 512, 1024, 2048, 4096

e Metadata is not stored together with data, stored in Allocation objects on the server only
e Upon freeing, data is filled with 0xCC (int 3)

Google 29

Issues

o CFG

o Issues that rely on return address overwrite
o lIssues that don't rely on return address overwrite

o ACG

o Memory corruption issues in the JIT process
o Logicissues in the JIT process

Google

30

Controlling bytecode

e What can we do with bytecode?

e T. Dullien: “Exploitation and state machines”

o Arbitrary read/write
o Overwriting the stack (in Chakra e.g. OP_ArgOut_A)

Google

31

Call instructions in the JIT code

e What happens when JIT code needs to call a function, e.g.
call chakralhelper function

e JIT server needs to know address of DLLs in the Content Process
O Q: How does it know?

O A: Content Process tells it.

Google

32

Checking module address in Content Process

Google

VirtualQueryEx on the first page and check:
o Return value of VirtualQueryEx is correct
allocation base address is the same as provided by the client
memory type is MEM_IMAGE
memory state is MEM_COMMIT
region size is not smaller than 4096 bytes
Get image headers and check:
o number of sections is correct
o number of symbols is correct
o checksum in the header is correct
o image size is correct

Bypassable by modifying the header region of another module

O O O O

33

Dangling CFG target

e From ServerFreeAllocation:

context->SetValidCallTargetForCFG((PVOID)codeAddress, false);

context->GetCodeGenAllocators()->emitBufferManager.FreeAllocation((void*)codeAddress);

e codeAddress inside allocation -> FreeAllocation() succeeds
o But CFG target doesn't get unset

e Possible to free allocation without clearing CFG flags

Google

34

JIT server attack surface

JSRT Hosting < Universal Windows

Parser Lowerer
Garbage
Collector

Interpreter JIT

Execution Machinery

JSON Diagnostic APIs COM Diagnostic APIs

LEGEND: - ChakraCore . + ! Chakra

Google

35

Memory corruption issues

e Integer overflows (CVE-2017-8637)

offsetToInstructionCount = lastOffset + 2;
m offsetToInstruction = JitAnewArrayZ(m tempAlloc, IR::Instr *, offsetTolInstructionCount);

m saveLoopImplicitCallFlags = (IR::0pnd**)func->m alloc->Alloc(sizeof (IR::0pnd*) * loopCount);
this->tempMap = (SymID*)m tempAlloc->AllocZero(sizeof (SymID) * tempCount);

e Out-of-bound writes (CVE-2017-8659)

this->m saveLoopImplicitCallFlags[num] = saveOpnd;

e Bytecode fuzzing produces crashes

Google

Memory corruption issues

e Does it make sense to exploit another memory corruption bug?

e Pros:

o Lots of them

o ASLR already bypassed
e C(Cons:

o CFG

o Heap ASLR

o Exploit stability

Google

37

The trouble with handles

e JIT Server needs to be able to allocate memory in Content Process
o JIT Server has a handle to Content Process

e Content Process needs to give its handle
o Needs to call DuplicateHandle() first

e Content Process needs a handle to JIT server to call DuplicateHandle()
o ..with PROCESS_DUP_HANDLE permissions

Google

38

The trouble with handles

v S
\l

P

f ’ .

& :
.y \o- o
A
:

Handles everywhere

Google

39

The trouble with handles

® Theissue:

Warning A process that has some of the access rights noted here can use them to gain other
access rights. For example, if process A has a handle to process B with PROCESS_DUP_HANDLE
access, it can duplicate the pseudo handle for process B. This creates a handle that has maximum
access to process B. For more information on pseudo handles, see GetCurrentProcess.

Google

40

Exploiting memory management

S| -
~ I N N i . |

Pages start as decommitted -> committed using VirtualAllocEx when needed
Each segment has 2 bit vectors for free pages and decommitted pages

Once a page gets committed it gets filled with 0xCC (int 3)

When sufficient number of pages is freed, pages start getting decommitted

41

Google

Exploiting memory management

S| -
~ I N N i . |

Pages start as decommitted -> committed using VirtualAllocEx when needed
Each segment has 2 bit vectors for free pages and decommitted pages

Once a page gets committed it gets filled with 0xCC (int 3)

When sufficient number of pages is freed, pages start getting decommitted

42

Google

Exploiting memory management

=» | Page || Page | Page | Page | Pago |

Free

e Pages start as decommitted -> committed using VirtualAllocEx when needed
o VirtualAllocEx called with fIProtect = PAGE_EXECUTE_READ

Google

43

Exploiting memory management

Predict the address of next JIT allocation.

Unmaps the shared memory with UnmapViewOfFile()
Allocate same pages with PAGE_READWRITE

Write payload

Wait

Google

44

@ Pid 812 - WinDbg:10.0.14321.1024 AMD64 - O X
File Edit View Debug Window Help
S LEEESHAR BP0 O EHAMEOREO0E 5 AN
apping TEB and stack regions... ~ | Virtual @$scopeip Previous | Display format: By te v || Next
applng heap regions... 00000225°8000700a fe 00 41 43 47 20 . .ACG
*** Failure in mapping Heap (80004002: ExtRemoteTyped:: (00000225°80007010 42 59 50 41 53 53 BYPASS
applng page heap regions. - 00000225°80007016 20 48 b8 37 13 37 H.7.7
applng other regions. % 00000225°8000701c 13 37 13 00 00 fe o B sor 50 @
applng stack trace database regions. .. 00000225°80007022 00 41 43 47 20 42 .ACG B
applng activation context regions. 2 00000225°80007028 59 50 41 53 53 20 YPASS
00000225°8000702e 48 b8 37 13 37 13 H.7.7.
Usage; <unknown> 00000225°80007034 37 13 00 00 fe 00 Tsewwms
Base Address: 00000225°80007000 00000225°8000703a 41 43 47 20 42 59 ACG BY
End Address: 00000225°80009000 00000225°80007040 50 41 53 53 20 48 PASS H
Region Size: 00000000 00002000 (8.000 kB)
State: 00001000 MEM COMMIT —_— =
Protect: 00000010 |PAGE EXECUTE| | offset/ @§scopeib Next | Previous
Type: 00020000 MEM_PRIVATE add byte ptr [rax],al
Allocation Base: 00000225°80000000 add byte ptr [rax],al
Allocation Protect: 00000004 PAGE READWRIT add byte ptr [rax],al
add byte ptr [rax],al
130000 mov rax,133713371337h
Content source: 1 (target), length: ff6 inc byte ptr [rax] ds:00001337 13371337
22°?
4 2?7
’0:032> ‘ (andi byte ptr [r10+59h],r8b)
Ln 0, Col 0 Sys O:<Local> Proc 000:32c Thrd 032:a08 ASM OVR CAPS NUM

Google

Enabling ACG

Google

Relies on setting the dynamic code policy
Enabled by SetProcessMitigationPolicy()
In Edge:

00
01
02
03
04
05
06
07

KERNELBASE ! SetProcessMitigationPolicy
MicrosoftEdgeCP!SetProcessDynamicCodePolicy+0xcO
MicrosoftEdgeCP!StartContentProcess Exe+0x164
MicrosoftEdgeCP!main+0xfe

MicrosoftEdgeCP! main+0xa6
MicrosoftEdgeCP!WinMainCRTStartup+0x1b3
KERNEL32!BaseThreadInitThunk+0x14
ntdll!RtlUserThreadStart+0x21

46

Disabling ACG

e ACG gets enabled too early for the Content Process to disable it for itself
e But.

James Forshaw: Did you know one Content Process can open another?
Me: Nah, | tried that, didn’t work

[try again]

Me: Oh, snap...

O O O O

e One MicrosoftEdgeCP.exe can disable ACG in another MicrosoftEdgeCP.exe
o Both processes need to be in the same App Container
o True for Internet sites
o Therace is easily winnable

Google

47

Conclusion

e ACG needs strong CFG to be effective

e Attacker’s perspective: Business as usual (mostly)

o Abundant CFG bypasses + calling native functions with JavaScript
o Implementation issues, large attack surface of the JIT server

e What can Microsoft do
o Make CFG useful (RFG? CET?)
o Stronger Content Process <-> JIT Process boundary

Google

48

