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About me

● Security researcher at Google Project Zero

● Previously: Google Security Team, Academia (UNIZG)

● Doing security research for the last 10 years

● Author: Domato, WinAFL, ROPGuard

● @ifsecure on Twitter
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Browser exploit flow (example)
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Code execution mitigations

● Before:
   mov rbx,qword ptr [rax+8]
   call rbx

● After:
   mov rbx,qword ptr [rax+8]
   mov rax, rbx
   call qword ptr [chakra!_guard_dispatch_icall_fptr]

● Bitmap of CFG-allowed targets (some granularity involved)

● Only checks forward edges (doesn’t check return addresses)
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Code execution mitigations

● 2 new mitigations Introduced in Windows 10 creators update (1703)
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Code execution mitigations

● Arbitrary Code Guard (ACG)
● Make it impossible to

○ allocate new executable pages 
■ e.g. VirtualAlloc(... ,... ,PAGE_EXECUTE_READWRITE ,...)

○ make existing executable pages writable
■ e.g. VirtualProtect(... ,... ,PAGE_EXECUTE_READWRITE ,...)

● Attempting results in 0xc0000604 STATUS_DYNAMIC_CODE_BLOCKED
● Similar to PaX MPROTECT
● What about JIT? JIT Server.
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Code execution mitigations

● Code Integrity Guard (CIG)
○ Can only load properly signed DLLs
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Agenda

● How ACG works?

● Is it effective?

● How does JIT server work

● Issues (CFG and ACG)
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Enabling ACG

● Relies on setting the dynamic code policy
● Enabled by SetProcessMitigationPolicy()
● In Edge:

00 KERNELBASE!SetProcessMitigationPolicy
01 MicrosoftEdgeCP!SetProcessDynamicCodePolicy+0xc0
02 MicrosoftEdgeCP!StartContentProcess_Exe+0x164
03 MicrosoftEdgeCP!main+0xfe
04 MicrosoftEdgeCP!_main+0xa6
05 MicrosoftEdgeCP!WinMainCRTStartup+0x1b3
06 KERNEL32!BaseThreadInitThunk+0x14
07 ntdll!RtlUserThreadStart+0x21
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When is it enabled?
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When is it enabled?

From Microsoft’s blog post:
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When is it enabled?
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How effective is ACG?

Assumption: Attacker has a read/write primitive

● Data-only attacks

● Code reuse attacks
○ Do we need a ROP compiler?

● Code second-stage payloads in JavaScript
○ Need a way to call native-code functions from JavaScript and continue running script
○ Libraries already exist (pwn.js from Theori)
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Mitigations that work together

● ACG, CIG, no CFG => ROP, privescs in JavaScript

● CFG, CIG, no ACG => Overwrite/allocate executable memory

● CFG, ACG, no CIG => Load a malicious .dll
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ACG Bypasses, prior work

● Abusing thread opt-out (no longer the case)
● Bypass using Warbird DRM framework (Alex Ionescu)
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JIT server (simplified)
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JIT server, maintaining state
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Exposed methods / managing contexts

● (!) ConnectProcess - Connects a new Content Process and creates the corresponding Process Context
● (!) InitializeThreadContext - Creates a ServerThreadContext object on the server. Also pre-reserves 

memory for compiled code and JIT thunks.
● InitializeScriptContext - Creates a ServerThreadContext object on the server.
● CleanupThreadContext - Marks Thread context as closed, removes it from the Thread context 

dictionary and closes all associated ScriptContexts
● CloseScriptContex - Marks Script context as closed and removes it from the Script context dictionary
● CleanupScriptContex - Closes script context if not closed already and deletes the associated 

ServerScriptContext object
● Shutdown - Deletes closed context objects, deletes allocated pages and unregisters RPC server
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Exposed methods / updating data in contexts

● UpdatePropertyRecordMap
● AddDOMFastPathHelper
● AddModuleRecordInfo
● SetWellKnownHostTypeId
● SetIsPRNGSeeded
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Exposed methods / working with thunks

● Thunk == short trampoline that jumps to function implementation
○ Executable code
○ Every function gets one

● NewInterpreterThunkBlock - Allocates a new executable buffer and fills it with 
interpreter thunks.

● DecommitInterpreterBufferManager - Decommits all memory pages used for 
thunk allocations.

● IsInterpreterThunkAddr - Checks if address is in one of the interpreter thunk 
blocks
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Exposed methods / working with compiled code

● (!) RemoteCodeGen
○ This is where the magic happens
○ Large structure as input/output

■ Bytecode
■ Type information, caches, inlinee information, addresses

● IsNativeAddr - checks if address is in one of the JIT blocks
● (!) FreeAllocation - Frees executable memory allocation made previously by the 

server and clears CFG targets
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JIT phases (1/2)

● (!) Build Intermediate Representation (IR) from bytecode
● Function inlining
● Build flow graph
● Global optimizations
● Lower IR into machine-specific representation (not yet encoded)
● Encode large constants (security)
● Insert stack probes
● Register allocation
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JIT phases (2/2)

● Peephole optimizations
● Layout
● Insert bailouts
● Insert NOPs at random points (security)
● Insert function prolog and epilog
● Final lower
● (!) Encoder
● Fixups on data allocated by JIT process
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Encoder phase (Encoder.cpp)

● Prepares the buffer with compiled code
○ Encoded instructions
○ Jump tables for switch statements

● Allocates memory for executable code
● Copies the buffer
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Busy
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Busy

● Segment == Shared memory object (created via CreateFileMapping)
● Mapped into each process using MapViewOfFile2

○ PAGE_EXECUTE_READ for content process
○ PAGE_READWRITE for JIT process

● In JIT process unmapped immediately after writing
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Busy

● Pages start as decommitted -> committed using VirtualAllocEx when needed
● Each segment has 2 bit vectors for free pages and decommitted pages
● Once a page gets committed it gets filled with 0xCC (int 3)
● When sufficient number of pages is freed, pages start getting decommitted
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Busy

● Large allocations (>pagesize) get the corresponding number of pages
● For smaller allocations, pages get divided into 128-byte blocks

○ Bitmap of free blocks inside a page
● Pages get put in buckets for allocations of size 128, 256, 512, 1024, 2048, 4096
● Metadata is not stored together with data, stored in Allocation objects on the server only
● Upon freeing, data is filled with 0xCC (int 3)
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Issues

● CFG
○ Issues that rely on return address overwrite
○ Issues that don’t rely on return address overwrite

● ACG
○ Memory corruption issues in the JIT process
○ Logic issues in the JIT process
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Controlling bytecode

● What can we do with bytecode?
● T. Dullien: “Exploitation and state machines”

○ Arbitrary read/write
○ Overwriting the stack (in Chakra e.g. OP_ArgOut_A)
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Call instructions in the JIT code

● What happens when JIT code needs to call a function, e.g.

call chakra!helper_function

● JIT server needs to know address of DLLs in the Content Process
○ Q: How does it know?

○ A: Content Process tells it.
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Checking module address in Content Process

● VirtualQueryEx on the first page and check: 
○ Return value of VirtualQueryEx is correct
○ allocation base address is the same as provided by the client
○ memory type is MEM_IMAGE
○ memory state is MEM_COMMIT
○ region size is not smaller than 4096 bytes

● Get image headers and check:
○ number of sections is correct
○ number of symbols is correct
○ checksum in the header is correct
○ image size is correct

● Bypassable by modifying the header region of another module
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Dangling CFG target

● From ServerFreeAllocation:

      context->SetValidCallTargetForCFG((PVOID)codeAddress, false);

      context->GetCodeGenAllocators()->emitBufferManager.FreeAllocation((void*)codeAddress);

● codeAddress inside allocation -> FreeAllocation() succeeds
○ But CFG target doesn’t get unset

● Possible to free allocation without clearing CFG flags
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JIT server attack surface
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Memory corruption issues

● Integer overflows (CVE-2017-8637)

    offsetToInstructionCount = lastOffset + 2;
    m_offsetToInstruction = JitAnewArrayZ(m_tempAlloc, IR::Instr *, offsetToInstructionCount);

    m_saveLoopImplicitCallFlags = (IR::Opnd**)func->m_alloc->Alloc(sizeof(IR::Opnd*) * loopCount);
    this->tempMap = (SymID*)m_tempAlloc->AllocZero(sizeof(SymID) * tempCount);

● Out-of-bound writes (CVE-2017-8659)

     this->m_saveLoopImplicitCallFlags[num] = saveOpnd;
    

● Bytecode fuzzing produces crashes
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Memory corruption issues

● Does it make sense to exploit another memory corruption bug?
● Pros:

○ Lots of them
○ ASLR already bypassed

● Cons:
○ CFG
○ Heap ASLR
○ Exploit stability
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The trouble with handles

● JIT Server needs to be able to allocate memory in Content Process
○ JIT Server has a handle to Content Process

● Content Process needs to give its handle
○ Needs to call DuplicateHandle() first

● Content Process needs a handle to JIT server to call DuplicateHandle()
○ ...with PROCESS_DUP_HANDLE permissions
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The trouble with handles
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The trouble with handles

● The issue:

       40



Busy

● Pages start as decommitted -> committed using VirtualAllocEx when needed
● Each segment has 2 bit vectors for free pages and decommitted pages
● Once a page gets committed it gets filled with 0xCC (int 3)
● When sufficient number of pages is freed, pages start getting decommitted
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Busy

● Pages start as decommitted -> committed using VirtualAllocEx when needed
○ VirtualAllocEx called with flProtect = PAGE_EXECUTE_READ
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Exploiting memory management

● Predict the address of next JIT allocation.
● Unmaps the shared memory with UnmapViewOfFile()
● Allocate same pages with PAGE_READWRITE
● Write payload
● Wait
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Enabling ACG

● Relies on setting the dynamic code policy
● Enabled by SetProcessMitigationPolicy()
● In Edge:

00 KERNELBASE!SetProcessMitigationPolicy
01 MicrosoftEdgeCP!SetProcessDynamicCodePolicy+0xc0
02 MicrosoftEdgeCP!StartContentProcess_Exe+0x164
03 MicrosoftEdgeCP!main+0xfe
04 MicrosoftEdgeCP!_main+0xa6
05 MicrosoftEdgeCP!WinMainCRTStartup+0x1b3
06 KERNEL32!BaseThreadInitThunk+0x14
07 ntdll!RtlUserThreadStart+0x21
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Disabling ACG

● ACG gets enabled too early for the Content Process to disable it for itself
● But…

○ James Forshaw: Did you know one Content Process can open another?
○ Me: Nah, I tried that, didn’t work
○ [try again]
○ Me: Oh, snap...

● One MicrosoftEdgeCP.exe can disable ACG in another MicrosoftEdgeCP.exe
○ Both processes need to be in the same App Container
○ True for Internet sites
○ The race is easily winnable

47



Conclusion

● ACG needs strong CFG to be effective

● Attacker’s perspective: Business as usual (mostly)
○ Abundant CFG bypasses + calling native functions with JavaScript
○ Implementation issues, large attack surface of the JIT server

● What can Microsoft do
○ Make CFG useful (RFG? CET?)
○ Stronger Content Process <-> JIT Process boundary
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