
Bypassing Mitigations by Attacking JIT Server in Microsoft Edge

Ivan Fratric
Infiltrate 2018

About me

● Security researcher at Google Project Zero

● Previously: Google Security Team, Academia (UNIZG)

● Doing security research for the last 10 years

● Author: Domato, WinAFL, ROPGuard

● @ifsecure on Twitter

2

Browser exploit flow (example)

3

Remote
vuln

Read/write
primitive

Code
execution

Break out
of process

Browser exploit flow (example)

4

Remote
vuln

Read/write
primitive

Code
execution

Break out
of process

Code execution mitigations

● Before:
 mov rbx,qword ptr [rax+8]
 call rbx

● After:
 mov rbx,qword ptr [rax+8]
 mov rax, rbx
 call qword ptr [chakra!_guard_dispatch_icall_fptr]

● Bitmap of CFG-allowed targets (some granularity involved)

● Only checks forward edges (doesn’t check return addresses)

5

Remote
vuln

Read/write
primitive

Code
execution

Break out
of process

CFG

Code execution mitigations

● 2 new mitigations Introduced in Windows 10 creators update (1703)

6

Remote
vuln

Read/write
primitive

Code
execution

Break out
of process

CFG
ACG
CIG

Code execution mitigations

● Arbitrary Code Guard (ACG)
● Make it impossible to

○ allocate new executable pages
■ e.g. VirtualAlloc(... ,... ,PAGE_EXECUTE_READWRITE ,...)

○ make existing executable pages writable
■ e.g. VirtualProtect(... ,... ,PAGE_EXECUTE_READWRITE ,...)

● Attempting results in 0xc0000604 STATUS_DYNAMIC_CODE_BLOCKED
● Similar to PaX MPROTECT
● What about JIT? JIT Server.

7

Remote
vuln

Read/write
primitive

Code
execution

Break out
of process

CFG
ACG
CIG

Code execution mitigations

● Code Integrity Guard (CIG)
○ Can only load properly signed DLLs

8

Remote
vuln

Read/write
primitive

Code
execution

Break out
of process

CFG
ACG
CIG

Agenda

● How ACG works?

● Is it effective?

● How does JIT server work

● Issues (CFG and ACG)

9

Enabling ACG

● Relies on setting the dynamic code policy
● Enabled by SetProcessMitigationPolicy()
● In Edge:

00 KERNELBASE!SetProcessMitigationPolicy
01 MicrosoftEdgeCP!SetProcessDynamicCodePolicy+0xc0
02 MicrosoftEdgeCP!StartContentProcess_Exe+0x164
03 MicrosoftEdgeCP!main+0xfe
04 MicrosoftEdgeCP!_main+0xa6
05 MicrosoftEdgeCP!WinMainCRTStartup+0x1b3
06 KERNEL32!BaseThreadInitThunk+0x14
07 ntdll!RtlUserThreadStart+0x21

10

When is it enabled?

11

When is it enabled?

From Microsoft’s blog post:

12

When is it enabled?

13

How effective is ACG?

Assumption: Attacker has a read/write primitive

● Data-only attacks

● Code reuse attacks
○ Do we need a ROP compiler?

● Code second-stage payloads in JavaScript
○ Need a way to call native-code functions from JavaScript and continue running script
○ Libraries already exist (pwn.js from Theori)

14

Mitigations that work together

● ACG, CIG, no CFG => ROP, privescs in JavaScript

● CFG, CIG, no ACG => Overwrite/allocate executable memory

● CFG, ACG, no CIG => Load a malicious .dll

15

ACG Bypasses, prior work

● Abusing thread opt-out (no longer the case)
● Bypass using Warbird DRM framework (Alex Ionescu)

16

JIT server (simplified)

17

Load script

Parse into bytecode

Interpret bytecode

Compile the bytecode

Allocate and write native
code to shared memory

Execute native code

RPC

Compiled code
PAGE_EXECUTE_READ

Compiled code
PAGE_READWRITE

Shared memory

bytecode, ...

native code address,
...

MicrosotfEdgeCP.exe (content process)
BlockDynamicCode = ON

MicrosotfEdgeCP.exe (JIT server)
BlockDynamicCode = OFF

JIT server, maintaining state

18

Load script

Parse into bytecode

Execute bytecode

Compile the bytecode

Allocate and write native
code to shared memory

Execute native code

RPC

Compiled code
PAGE_EXECUTE_READ

Compiled code
PAGE_READWRITE

Shared memory

Bytecode, ...
context handle

native code address,
...

MicrosotfEdgeCP.exe (content process)
BlockDynamicCode = ON

MicrosotfEdgeCP.exe (JIT server)
BlockDynamicCode = OFF

Process
context

Thread
context

Script
context

Bytecode, ...
context ptr

Exposed methods / managing contexts

● (!) ConnectProcess - Connects a new Content Process and creates the corresponding Process Context
● (!) InitializeThreadContext - Creates a ServerThreadContext object on the server. Also pre-reserves

memory for compiled code and JIT thunks.
● InitializeScriptContext - Creates a ServerThreadContext object on the server.
● CleanupThreadContext - Marks Thread context as closed, removes it from the Thread context

dictionary and closes all associated ScriptContexts
● CloseScriptContex - Marks Script context as closed and removes it from the Script context dictionary
● CleanupScriptContex - Closes script context if not closed already and deletes the associated

ServerScriptContext object
● Shutdown - Deletes closed context objects, deletes allocated pages and unregisters RPC server

19

Exposed methods / updating data in contexts

● UpdatePropertyRecordMap
● AddDOMFastPathHelper
● AddModuleRecordInfo
● SetWellKnownHostTypeId
● SetIsPRNGSeeded

20

Exposed methods / working with thunks

● Thunk == short trampoline that jumps to function implementation
○ Executable code
○ Every function gets one

● NewInterpreterThunkBlock - Allocates a new executable buffer and fills it with
interpreter thunks.

● DecommitInterpreterBufferManager - Decommits all memory pages used for
thunk allocations.

● IsInterpreterThunkAddr - Checks if address is in one of the interpreter thunk
blocks

21

Exposed methods / working with compiled code

● (!) RemoteCodeGen
○ This is where the magic happens
○ Large structure as input/output

■ Bytecode
■ Type information, caches, inlinee information, addresses

● IsNativeAddr - checks if address is in one of the JIT blocks
● (!) FreeAllocation - Frees executable memory allocation made previously by the

server and clears CFG targets

22

JIT phases (1/2)

● (!) Build Intermediate Representation (IR) from bytecode
● Function inlining
● Build flow graph
● Global optimizations
● Lower IR into machine-specific representation (not yet encoded)
● Encode large constants (security)
● Insert stack probes
● Register allocation

23

JIT phases (2/2)

● Peephole optimizations
● Layout
● Insert bailouts
● Insert NOPs at random points (security)
● Insert function prolog and epilog
● Final lower
● (!) Encoder
● Fixups on data allocated by JIT process

24

Encoder phase (Encoder.cpp)

● Prepares the buffer with compiled code
○ Encoded instructions
○ Jump tables for switch statements

● Allocates memory for executable code
● Copies the buffer

25

Busy

26

Segment

Page

Alloc Free

Page Page

Alloc

Page Page Free

Decommitted

Allocating memory

Busy

● Segment == Shared memory object (created via CreateFileMapping)
● Mapped into each process using MapViewOfFile2

○ PAGE_EXECUTE_READ for content process
○ PAGE_READWRITE for JIT process

● In JIT process unmapped immediately after writing

27

Segment

Page

Alloc Free

Page Page

Alloc

Page Page Free

Decommitted

Allocating memory / Segments (SectionAllocWrapper.cpp)

Busy

● Pages start as decommitted -> committed using VirtualAllocEx when needed
● Each segment has 2 bit vectors for free pages and decommitted pages
● Once a page gets committed it gets filled with 0xCC (int 3)
● When sufficient number of pages is freed, pages start getting decommitted

28

Segment

Page

Alloc Free

Page Page

Alloc

Page Page Free

Decommitted

Allocating memory / Pages (PageAllocator.cpp)

Busy

● Large allocations (>pagesize) get the corresponding number of pages
● For smaller allocations, pages get divided into 128-byte blocks

○ Bitmap of free blocks inside a page
● Pages get put in buckets for allocations of size 128, 256, 512, 1024, 2048, 4096
● Metadata is not stored together with data, stored in Allocation objects on the server only
● Upon freeing, data is filled with 0xCC (int 3)

29

Segment

Page

Alloc Free

Page Page

Alloc

Page Page Free

Decommitted

Allocating memory / Allocations (CustomHeap.cpp)

Issues

● CFG
○ Issues that rely on return address overwrite
○ Issues that don’t rely on return address overwrite

● ACG
○ Memory corruption issues in the JIT process
○ Logic issues in the JIT process

30

Controlling bytecode

● What can we do with bytecode?
● T. Dullien: “Exploitation and state machines”

○ Arbitrary read/write
○ Overwriting the stack (in Chakra e.g. OP_ArgOut_A)

31

Call instructions in the JIT code

● What happens when JIT code needs to call a function, e.g.

call chakra!helper_function

● JIT server needs to know address of DLLs in the Content Process
○ Q: How does it know?

○ A: Content Process tells it.

32

Checking module address in Content Process

● VirtualQueryEx on the first page and check:
○ Return value of VirtualQueryEx is correct
○ allocation base address is the same as provided by the client
○ memory type is MEM_IMAGE
○ memory state is MEM_COMMIT
○ region size is not smaller than 4096 bytes

● Get image headers and check:
○ number of sections is correct
○ number of symbols is correct
○ checksum in the header is correct
○ image size is correct

● Bypassable by modifying the header region of another module

33

Dangling CFG target

● From ServerFreeAllocation:

 context->SetValidCallTargetForCFG((PVOID)codeAddress, false);

 context->GetCodeGenAllocators()->emitBufferManager.FreeAllocation((void*)codeAddress);

● codeAddress inside allocation -> FreeAllocation() succeeds
○ But CFG target doesn’t get unset

● Possible to free allocation without clearing CFG flags

34

JIT server attack surface

35

Memory corruption issues

● Integer overflows (CVE-2017-8637)

 offsetToInstructionCount = lastOffset + 2;
 m_offsetToInstruction = JitAnewArrayZ(m_tempAlloc, IR::Instr *, offsetToInstructionCount);

 m_saveLoopImplicitCallFlags = (IR::Opnd**)func->m_alloc->Alloc(sizeof(IR::Opnd*) * loopCount);
 this->tempMap = (SymID*)m_tempAlloc->AllocZero(sizeof(SymID) * tempCount);

● Out-of-bound writes (CVE-2017-8659)

 this->m_saveLoopImplicitCallFlags[num] = saveOpnd;

● Bytecode fuzzing produces crashes

36

Memory corruption issues

● Does it make sense to exploit another memory corruption bug?
● Pros:

○ Lots of them
○ ASLR already bypassed

● Cons:
○ CFG
○ Heap ASLR
○ Exploit stability

37

The trouble with handles

● JIT Server needs to be able to allocate memory in Content Process
○ JIT Server has a handle to Content Process

● Content Process needs to give its handle
○ Needs to call DuplicateHandle() first

● Content Process needs a handle to JIT server to call DuplicateHandle()
○ ...with PROCESS_DUP_HANDLE permissions

38

The trouble with handles

39

The trouble with handles

● The issue:

 40

Busy

● Pages start as decommitted -> committed using VirtualAllocEx when needed
● Each segment has 2 bit vectors for free pages and decommitted pages
● Once a page gets committed it gets filled with 0xCC (int 3)
● When sufficient number of pages is freed, pages start getting decommitted

41

Segment

Page

Alloc Free

Page Page

Alloc

Page Page Free

Decommitted

Exploiting memory management

Busy

● Pages start as decommitted -> committed using VirtualAllocEx when needed
● Each segment has 2 bit vectors for free pages and decommitted pages
● Once a page gets committed it gets filled with 0xCC (int 3)
● When sufficient number of pages is freed, pages start getting decommitted

42

Segment

Page

Alloc Free

Page Page

Alloc

Page Page Free

Decommitted

Exploiting memory management

Busy

● Pages start as decommitted -> committed using VirtualAllocEx when needed
○ VirtualAllocEx called with flProtect = PAGE_EXECUTE_READ

43

Segment

Page

Alloc Free

Page Page

Alloc

Page Page Free

Decommitted

Exploiting memory management

Exploiting memory management

● Predict the address of next JIT allocation.
● Unmaps the shared memory with UnmapViewOfFile()
● Allocate same pages with PAGE_READWRITE
● Write payload
● Wait

44

45

Enabling ACG

● Relies on setting the dynamic code policy
● Enabled by SetProcessMitigationPolicy()
● In Edge:

00 KERNELBASE!SetProcessMitigationPolicy
01 MicrosoftEdgeCP!SetProcessDynamicCodePolicy+0xc0
02 MicrosoftEdgeCP!StartContentProcess_Exe+0x164
03 MicrosoftEdgeCP!main+0xfe
04 MicrosoftEdgeCP!_main+0xa6
05 MicrosoftEdgeCP!WinMainCRTStartup+0x1b3
06 KERNEL32!BaseThreadInitThunk+0x14
07 ntdll!RtlUserThreadStart+0x21

46

Disabling ACG

● ACG gets enabled too early for the Content Process to disable it for itself
● But…

○ James Forshaw: Did you know one Content Process can open another?
○ Me: Nah, I tried that, didn’t work
○ [try again]
○ Me: Oh, snap...

● One MicrosoftEdgeCP.exe can disable ACG in another MicrosoftEdgeCP.exe
○ Both processes need to be in the same App Container
○ True for Internet sites
○ The race is easily winnable

47

Conclusion

● ACG needs strong CFG to be effective

● Attacker’s perspective: Business as usual (mostly)
○ Abundant CFG bypasses + calling native functions with JavaScript
○ Implementation issues, large attack surface of the JIT server

● What can Microsoft do
○ Make CFG useful (RFG? CET?)
○ Stronger Content Process <-> JIT Process boundary

48

