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What is this talk about ?

• Keywords for conversations in the community: vulnerabilities, exploits, 
control-hijack, stability, write4 etc.

• “Clear to everybody"

• A lot of folklore knowledge -- impossible-to-attribute terms understood by 
people immersed in the community

• Occasionally, clashes with academia flare up when terms (“exploit”) are 
misappropriated

o APEG - Hopping a few branches to reach vulnerability
o AEG - Successfully performing a simple EIP hijack on a 2003-style 

example
o Return-Oriented Programming - repeated chaining of existing code 

fragments



What is this talk about ?

• Reconsidering what we do: 

• What exactly is this thing we call “exploitation” ?

• What are the current limits of automation ?

• Part 1 of the talk:

• What is exploitation ?

• What is the right way to think about exploitation ?

• Why doesn't ASLR+DEP matter in many situations ?

• Tangentially related to this I will talk about

• What is the role of the implicit state machines ?

• What do these state machines mean for static analysis and automated 
input generation ?

• Does existing theory capture any of it ?



Whose ideas are these ?

• The underlying ideas in the talk are clearly not "my" ideas

• Everybody that has built sophisticated exploits has parts of 
these ideas floating around in his brain

• TAOSSA mentions very similar ideas, less fleshed out

• Sergey Bratus seems to have coined the term “weird 
machine”

• Truth is: This is folklore knowledge that really should be put 
in writing somewhere (before we get 20 papers claiming 
invention)



What are programs ?

• Every instruction transforms a state into a new state

• “Traditional” way to look at code

• Is this the right way to look at things ? Isn't it overly fine-
grained ?

• Slightly different viewpoint: Each interaction with a program 
transforms a state into a new state

• The programmer defines a set of “valid states” – a program 
can only do things allowed by these states, and executing 
attacker code isn't part of that



Memory corruptions ...

• So let's view programs as finite state machines

• Interaction causes transitions between states

• Assume all states are “under control” – e.g. no valid 
program state is insecure (for this presentation)

• … and then we corrupt memory ...

• Suddenly, the space of possible program states explodes in 
size



Weird machines ...

• The transition functions that map between states still exist

• They now they operate on invalid / absurd states

• With each interaction, we transform one invalid / absurd state into 
a new absurd / invalid state

• We have a new state machine now: One with gazillions of 
unknown states, and most transitions lead to instant death (crash)

• But in the end, this isn't much different from any CPU – at any 
point in time, most instructions will yield a crash

• Sergey Bratus called these things “weird machines”



So what is exploitation really ?

• Exploitation is setting up, instantiating, and programming the 
weird machine



So what is exploitation really ?

• The goal is to reach a state that violates security 
assumptions (ideally in the most egregious imaginable way)

• The “traditional” EIP-to-data hijack was just an easy way to 
transform the weird machine into one we understand well: 
Native CPU code

• In the end, we really do not care -how- we're performing 
computations inside the process address space



Weird machines – what are they ?

• Weird machines are application-dependent

• Weird machines are initial-state-dependent

• Weird machines are really hard to control – hence attackers 
spend a lot of time setting the initial state in a way that 
allows more controlled transitions

• Even then, probabilistic risk remains: Initial state is 
nondeterministic (unknown initial heap state due to inherent 
nondeterminism from multithreaded heap operations)



Examples for weird machine programs

• Bootstrapping regular executable code via chaining code 
chunks – short, transition to x86

• Mark Dowd's virtual shellcode work (patching out restrictions 
from the .NET/Java interpreter, executing unrestricted code)

• Fully chained payloads (Iozzo/Weinmann IPhone 2010)

• Peter Vreugdenhil ASCII/Unicode overflow-to-infoleak

• But much more: Pretty much any sophisticated heap exploit 
nowadays has  a long set-up to start the weird machine in 
the right initial configuration



Consequences

• Mitigations fail routinely. The pattern is:

• 10: Attackers use one “path” to program the weird machine

• 20: Defenders mitigate against that path

• 30: Attackers change the path slightly

• 40: After a few months/years of ownage, a path becomes 
public. GOTO 20. 

• Forensics on sophisticated exploits without the trigger can be very 
hard

• Without network traffic, you might not have reproducibility

• Your server did something bizarre and unexplainable – 
without understanding the initial state and the instructions of 
the weird machine, understanding is nigh-impossible



What does this mean for the attacker ?

• “Cut out all this handwaving – get to the meat”

• ASLR+DEP do not matter nearly as much as one would 
think

• Most of the time, they can be broken through clever weird 
machine programming

• Infoleaks are made, not found

• Sometimes, you can program the weird machine without an 
infoleak



Many ways that ASLR+DEP failed

• Phrack 58.4 (Nergal), Phrack 59.9 (Tyler Durden) (PaX specific, fixed)
• Dowd / Sotirov: How to Impress Girls with Browser Memory Protection 

Bypasses 
• Dowd: Virtual Shellcode
• Blazakis: Btree element ordering pointer inference
• Blazakis: JIT spraying
• Currently en vogue: Programming the weird machine to create an info 

leak 

• Example: Peter Vreudgenhil's ASCII/Unicode Overlap

• Dozens of others are floating around, standard fare for modern 
server-side attacks – every second researcher has a favourite

• In this talk (mostly as academic exercise): Hijacking the 
Spidermonkey Javascript Bytecode interpreter



Hijacking the Spidermonkey bytecode 

• Spidermonkey compiles Javascript into a byte code

• This byte code is subsequently interpreted

• The byte code is trusted – it is assumed to be generated by 
the compiler, and not do anything evil

• The byte code is quite powerful – you can certainly do 
whatever you want once you execute arbitrary such code

• Adding values, copying data, etc. are all doable with a bit of 
effort



Useful instructions

• JSOP_POPN
• JSOP_DUP
• JSOP_DUP2
• JSOP_POPV
• JSOP_GOTOX, JSOP_GOTO
• JSOP_SWAP
• JSOP_ADD, JSOP_OR, JSOP_SUB etc.
• JSOP_IFEQ
• JSOP_SETLOCAL



Useful instructions

• JSOP_POPN

BEGIN_CASE(JSOP_POPN)

            regs.sp -= GET_UINT16(regs.pc);          
END_CASE(JSOP_POPN)



Useful instructions

• JSOP_SWAP

BEGIN_CASE(JSOP_SWAP)

            rtmp = regs.sp[-1];

            regs.sp[-1] = regs.sp[-2];

            regs.sp[-2] = rtmp;

END_CASE(JSOP_SWAP)



Useful instructions

• JSOP_POPV

BEGIN_CASE(JSOP_POPV)

            ASSERT_NOT_THROWING(cx);

            fp->rval = POP_OPND();

END_CASE(JSOP_POPV)



Useful instructions

• JSOP_SETLOCAL

BEGIN_CASE(JSOP_SETLOCAL)

            slot = GET_UINT16(regs.pc);

            JS_ASSERT(slot < script->depth);

            vp = &fp->spbase[slot];

            GC_POKE(cx, *vp);

            *vp = FETCH_OPND(-1);

END_CASE(JSOP_SETLOCAL)



Amusing complications
Some amusing complications arise due to Spidermonkey's 
peculiar handling of values that double as pointers to objects.

Writing large values can be challenging, and writing to non-
dword aligned locations takes a bit of imagination.

It's fun, though, and much less annoying than writing code in 
JITsprayed operands.



Slightly amusing scenario

• Ok, let's assume we have a semi-controlled write
• We can write a value that we control
• The destination address is not really controlled – a 

random 24 bit value will be added before the write
• The write will be DWORD aligned though – so only 22 bit 

of random

• ASLR + DEP are enabled – we don't know any code 
addresses, but we vaguely know (with some margin of error) 
where the heap is at

• Can we get reliable execution ?



Battle plan

• Fill the heap with the bytecode of Javascript Functions 
(generated by the Javascript compiler)

• Make sure these functions “call each other”
• Each function calls the “next” function in the chain

• Interleave those bytecode arrays on the heap with controlled 
data

• Write a jump jump into bytecode stream

• Hijack execution of the bytecode interpreter



Diagram

Javascript Function

Data



Diagram
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Javascript Function

Data

Approx. 50 megs



Diagram

Javascript Function

Data

Garbage collection kicks in, 
just for illustration

Data is blackData is black

Bytecode is 
green



Hijacking the stream

• What Javascript are we going to populate memory with ?

f(v,idx,arr){ v++(...);if( idx < MAX ) arr[idx+1](v,idx+1,arr); }

• Streams of “v++;” get compiled to 

0x63 0x00 0x00      arginc 0

0x51                        pop

• 4-byte aligned, for your convenience

• Overwrite with JSOP_GOTO 0x06 0xXXXX

• Alternatively, with JSOP_GOTO 0x8B 0xXXXXXXXX



Summary

• Extremely simplified scenario

• Within Adobe Reader, semi-controlled write4 with a 25-
megabyte margin-of-error will still be moderately easily 
exploitable in the presence of ASLR+DEP

• This should hold for IE and Firefox, too



Questions for part 1 ?



No, we don't need the interpreter

• Having an interpreter certainly makes life easy

• There's many of these – think Postscript, Glyph Scaling, 
Javascript, Flash, Python, PHP etc. etc. etc.

• Exercise: Analyze Microsoft's Javascript implementation for 
the same sort of fun

• But you do not need the interpreter

• The take-away from this presentation is: You can and should 
be programming the weird machines

• Obsession with taking EIP might sometimes be a bad thing



Credit for prior art

• Sergey Bratus for his RSS talk 2009
http://www.cs.dartmouth.edu/~sergey/hc/rss-hacker-research.pdf

• The TAOSSA Crew (Justin Schuh, Mark Dowd, John 
McDonald) for having implicitly formulated a lot of this 

• Stefan Esser for prior work on the PHP interpreter (Syscan 
2010)

• Mark Dowd for his contributions on Virtual Shellcode 
(PacSec 2010)

• I am sure I have forgotten more, please ping me so you get 
added

http://www.cs.dartmouth.edu/~sergey/hc/rss-hacker-research.pdf


Part 2: Implicit state machines

• This part is less constructive than the first part

• It will mostly be a critical examination of the actual 
capabilities of the tools & theory available to us

• I don't have solutions

• I'll just discuss a bunch of things that we (as a species) 
really don't know how to do yet



Implicit state machines

• A lot of folks want to do “automated exploitation”

• Bugfinding → input crafting to reach vulnerability → Execution Hijack

• Static Analysis → Dynamic symbolic execution → SMT Solving

• A common mistake made by everybody: Viability of a code path 
depends heavily on application state

• Getting an application into the right state can be hard

• There is always an implicit state machine in the way

• Ignoring the implicit state machines leads to failure (or worse, 
overstating your actual achievement and having that published)



Why is input crafting hard ?

• Many folks have gone down the route “generate constraints from program path, throw 
into solver, pray for result”

• How do you treat global state here ?

• What if the program wants you to issue a “EHLO” first ? 

• The necessary state modifications will happen on a different program path

• If you don't know sets of possible values for global state variables, you won't know if 
a path is feasible or not

• Real software almost always requires you to put the program into a state that will 
permit the vulnerable code path. This is a recursive problem: To put the software into 
that state, you might to have to first put it into another state. 

Ignoring the implicit state machine is not helping.



Determining nonexploitability is hard

• A crash is always a symptom – the root cause is something else

• The root cause is usually -semantic- in nature – not checking something, 
misunderstanding something, misusing something

• The root cause and the crash can be arbitrarily far removed – a process can 
crash hours after the actual root cause for the crash

• In order to determine exploitability, one would have to:

• Backtrack to find the -semantic- root cause

• Explore program states forward from there to see what one can do

• That stuff is hard. 

• !exploitable pays for trying to solve the problem cheaply by being essentially a 
biased coinflip



Why didn't static analysis kill all bugs?

• Ask a static analysis guru:
• Why have your tools not killed all bugs (or found really 

awesome bugs) ?

• Usual answers are:
• Interprocedural analysis is hard
• C++ analysis is hard
• “They will, next year” 
• “They aren't used widely enough”

• While most of the above is true, there are other reasons, too



Why didn't static analysis kill all bugs?

• Let's check a real bug & reduce it: crackaddr() overflow

• Reduced to small example
• 60 lines of C code, 
• one function
• simple stack overflow 
• yet no static analyzer can distinguish vulnerable from 

non-vulnerable





Remove comment
to fix bug



The state machine

00 01

10 11

• We need to cycle through 00 → 01 → 00 → (…) many 
times to push the upper pointer outside of bounds

• We need to then perform at least 100 iterations to copy 
data

• Then we have a standard stack smash



Why does static analysis fail ?

• Most abstract interpretation-style analyses will try to map 
program lines to sets of states for variables 

• Some of the more sophisticated analyses use relational 
domains (e.g. putting multiple variables into relationship to 
each other)

• They tend to “combine” different states using something like 
a union operator



Why does static analysis fail here ?

• When control flow converges, states are merged and “safely approximated”

• So “state 00 and p between 0 and 4” combined with “state 01 and p between 0 and 2” 
will be combined into “state 00 or 01 and p between 0 and 4”

• This contains spurious states: 01 and p=4 can't actually happen

• More precision is lost on each iteration of the loop

• So … uhm … even when we could solve all the interprocedural analysis and C++ 
issues, we still fail on heavily simplified versions of real-world code



Summary

• Automated input crafting that ignores the implicit state machine is useless in 
most real-world scenarios 

• Determining that a bug identified by a crash is not exploitable is impossible 
without a full program trace up until that point – and even then it's totally 
unclear how you'd go about it

• Static analysis is powerful for large classes of bugs – but memory-copying 
loops with multiple internal states still mean failure most of the time

• Clearly, one can construct & find examples where all of this works – but just 
because I can construct one example where I do not fail does not mean I 
succeed.
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